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F o r m u l a t i o n s ,  regions  of appl icat ion,  and methods of solution of i nve r se  p rob l ems  of 
heat t r a n s f e r  a r e  cons idered  fo r  t h e r m a l  design,  s imula t ion ,  and p rocess ing  of e x p e r i -  
menta l  r e su l t s  

F o r m u l a t i o n s  a n d  C l a s s i f i c a t i o n s  o f  I n v e r s e  P r o b l e m s  

All the formula t ions  of the h e a t - t r a n s f e r  p rob l ems  between a solid or  a ce r ta in  s y s t e m  and the env i ron-  
ment  in th is  p a p e r  will be examined f r o m  the viewpoint of the cause and effect  re la t ionship .  Among the causa l  
c h a r a c t e r i s t i c s  of the h e a t - t r a n s f e r  p r o c e s s  in a body (system) a r e  the boundary conditions and the i r  p a r a m -  
e t e r s ,  the init ial  condit ions,  the t he rm ophys i ca l  p rope r t i e s ,  the in te rna l  heat sources  and conduct ivi t ies ,  
and a l so  the g e o m e t r i c  c h a r a c t e r i s t i c s  of the body or sys t em.  Then any t h e r m a l  s ta te  governed by the t e m -  
p e r a t u r e  field of the object  of invest igat ion will be the effect .  The build up of cause  and effect  re la t ions  is  
the a im  of d i r ec t  h e a t - t r a n s f e r  p r o b l e m s .  On the other  hand, if it is r equ i red  to reproduce  causal  c h a r a c -  
t e r i s t i c s  by means  of defini te in format ion  about the t e m p e r a t u r e  f ield,  then we have some  formulat ion of the 
i n v e r s e  p rob lem of heat t r a n s f e r .  

In con t ra s t  to  the d i rec t  p r o b l e m s ,  formula t ions  of the inverse  p rob l ems  does not co r respond  to phys i -  
cal ly r ea l i zab le  phenomena ,  for  ins tance ,  i t  is not poss ib le  to r e v e r s e  the course  of the h e a t - t r a n s f e r  p r o c e s s ,  
and the reby  to  change the cou r s e  of t ime .  T h e r e f o r e ,  it is  poss ib le  to speak  about the phys ica l  i n c o r r e c t n e s s  

o f  the fo rmula t ion  of the i nve r s e  p rob l em.  Natura l ly ,  i t  a l ready  appea r s  as  a ma thema t i ca l  i n c o r r e c t n e s s  in 
the m a t h e m a t i c a l  fo rma l i za t ion  (most often an instabi l i ty in the solution),  and inve r se  p rob l ems  a re  a typica l  
example  of i n c o r r e c t l y  fo rmula t ed  p rob l em s  in h e ~ - t r a n s f e r t h e o r y .  The init ial  formula t ion  of the p rob lem 
mus t  be p r e d e t e r m i n e d  in a spec ia l  m anne r  in o rde r  to obtain a r egu l a r  solution.  

By genera l i z ing  p r o b l e m s  of this  type ,  we cons ider  al l  meaningful  i nve r se  p rob l ems  of heat  and m a s s  
t r a n s f e r .  They can be sel~arated into s e v e r a l  l a rge  c l a s s e s .  These  a r e  p r i m a r i l y  the i nve r se  p rob l ems  of 
heat  conduction (IPHC) when i t  i s  a s s u m e d  that  the h e a t - t r a n s p o r t  p roce s s  in a solid is r ea l i zed  pure ly  conduc- 
t ive ly ,  o r  the h e a t - t r a n s f e r  model  in a body is  r e p r e s e n t a b l e  by the heat-conduct ion equation with effect ive 
values  of the coeff ic ients .  In conformi ty  with the causa l  c h a r a c t e r i s t i c s  introduced above,  it is logical  to sub-  
divide the i n v e r s e  p r o b l e m s  of heat  conduction into boundary ,  coeff icient ,  r e t r o s p e c t i v e ,  and g e o m e t r i c  in-  
v e r s e  p r o b l e m s  depending on whether  the de s i r ed  c h a r a c t e r i s t i c  is  among the boundary conditions or  the co-  
eff ic ients  of the equation,  i s  p rov is iona l ly  r e c i p r o c a l  to  the t i m e ,  or  the p a r a m e t e r s  a r e  de te rmined  by the 
g e o m e t r i c  body shape.  T h e r e  may be dis t inct  combined fo rmula t ions  of the IPHC,  when causal  c h a r a c t e r i s t i c s  
of d i f ferent  types  en te r  s imul taneous ly .  Depending on the model  of the p roce s s  being used and on the kind of 
domain  of va r ia t ion  of the independent v a r i a b l e s ,  the i nve r se  p rob l ems  of heat conduction a r e  sepa ra ted  into 
one-  and mul t id imens iona l ,  l inear  and nonl inear ,  with fixed or  moving boundar ies ,  s imply  or  mult iply con-  
nected.  

I t  i s  impor tan t  to  dis t inguish i nve r s e  p rob l ems  intended to  ana lyze  t h e r m a l  p r o c e s s e s  and t h e r m a l  
model ing f r o m  inve r s e  p r o b l e m s  in t h e r m a l  design,  i . e . ,  i nve r s e  p rob l ems  to synthes ize  engineer ing s y s -  
t e m s  with r equ i red  c h a r a c t e r i s t i c s .  

I nve r se  p r o b l e m s  of complex  heat t r a n s f e r ,  heat t r a n s f e r  in a s y s t e m  of bodies ,  i nve r se  p rob l ems  in 
boundary l aye r  t heo ry ,  in a conjugate formula t ion  can be introduced analogously to i nve r se  p rob lems  of heat 
conduction. I n v e r s e  p rob l em s  of heat conduction and i nve r se  p rob l ems  for  engineer ing s y s t e m s  have been 
studied and applied p rac t i ca l ly  m o s t .  
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Let us consider  a certain sys tem consist ing of n bodies ~4th internal  heat l iberation (absorption). 
The bodies of the sys tem exchange the rmal  energy with the environment and mutually. This hea t - t r ans fe r  
p rocess  is determined by the pa ramete r s  of the boundary conditions and the heat-balance equations,  by 
conductive, convective,  and radiation type re la t ions ,  by effective thermophysica l  charac te r i s t i c s  and heat 
sources ,  by the geomet ry  and mutual a r rangement  of the bodies, and also by the initial t he rma l  state of the 
sys tem.  If it is  required to compute the running the rmal  state ( temperature mode) by means of the men-  
tioned causal cha rac te r i s t i c s ,  then such a computation is the subject of a di rect  problem of the sys tem heat 
t r ans fe r .  In the case when individual causal  cha rac te r i s t i c s  are  unkno~,~ and it is required to determine 
them by means of known information about the thermal  state of the sys tem (actual in a s imulat ion and 
allowable in design), then inverse  problems of the heat t r ans f e r  of an engineering sys tem are  solved. In 
this case a composite thermal  model of the sys tem is used. By applying the method of breaking down the 
composite model into simple ones,  it is  possible to go over to formulat ions of local inverse  problems of 
heat t r ans f e r ,  usually to inverse problems of heat conduction. 

I n v e r s e  P r o b l e m s  in  T h e r m a l  D e s i g n  

The need to formulate  and soh, e inverse  problems of heat t r ans fe r  appears  at all fundamental design 
stages and the experimental  checkout of an engineering sys tem for which the thermal  mode is the cr i t ical  
concept and the design charac te r i s t i c s  are  determined by constraints  on the allox~ble tempera ture  condi- 
tions for operation of the individual subsys tems ,  aggrega tes ,  units,  and elements .  Let us briefly examine 
the appropr ia te  ranges of application of inverse  problems.  

Making engineering decisions in the design of a certain object is based on optimizing the d e s i g n p a r a m -  
eters  with thermal  const ra ints  taken tnto account. Underlying the optimal t he rma ldes ign  is a m a t h e m a t -  
ical thermal  model of the sys tem and the ta rge t  function to be extremized.  The model re la tes  the desired 
design (causal f rom the vie~qaoint of formulation of the inverse  problem) charac te r i s t i c s  to the variables 
of the state (effect charac ter is t ics)  and the loading effects ,  the external  and internal  heat fluxes, for  ex-  
ample.  The fully defined hea t - t r ans fe r  and geometr ic  cha rac t e r i s t i c s  of the sys tem correspond to possible 
variants_of the design and s t ruc tura l  solutions. 

Therefore ,  the problem of optimal the rmal  design can be considered as the inverse  problem of heat 
and mass t r ans fe r  in an extremal  formulat ion:  Find the required causal  cha rac te r i s t i c s  satisfying a state 
by means of the known conditions governing the allowable thermal  state of the sys tem ( i . e . ,  in conformity 
with the given range of variat ion of the effect charac te r i s t i cs ) ,  and also the optimality cr i te r ion  of the s y s -  
tem.  The checking of thermal  computations in the design stage should re fe r  to the direct  problems of heat 
and mass  t r ans f e r  since the thermal  state of a sys tem is sought in this case according to known causal  
cha rac te r i s t i c s .  

Composite mathematical  models of the sys tem are  usually constructed by using models of individual 
elements  and of heat-and m a s s - t r a n s f e r  p roces ses .  Experimental  methods a re  hence utilized extensively 
to select ,  c o r r e c t ,  and verify the consis tency of both simple and composite models .  Here inverse  heat-  
t r ans fe r  problems should identify the rmal  objects (engineering apparatus or  heat-and m a s s - t r a n s f e r  pro-  
cesses)  as well as p rocess  the resul ts  of a thermal  experiment and check the appropria te  causal  c h a r a c -  
te r i s t ic  during the tes ts .  

Finally,  the object being designed and its composite parts  pass through an experimental  checkout and 
test  af ter  fabricat ion of the experimental  and operating specimens.  Also, inverse  hea t - t r ans fe r  problems 
provide the means for  obtaining the resul ts  needed, since many exper imenta l -data  process ing  and in te rpre-  
tation p rocesses  rely on the solution of these problems.  

Let us examine thermal  simulation and pa rame te r  optimization problems in the thermal  design of 
engineering sys tems  in more  detail.  

T h e r m a l  S i m u l a t i o n  

The general  methodology of simulation (identification in the broad and nar row senses  [1, 2]) can be 
made specific in application to thermal  simulation whose final purpose is to construct  a thermal  model of 
the phenomenon being investigated or  the sys tem being designed. 

Charac ter i s t ic  of the rmal  simulation is that in many cases  only a passive mode of identifying the ob- 
ject  of investigation turns  out to be a l l o ~ b l e .  Excitation effects (heat fluxes, body-surface  t empera tu re s ,  
heat-el iminat ion coefficients ,  e tc . )  cannot be obtained as a special  form of the tes t  signal and are  often 
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quantities whose d i rec t  measurement  is e i ther  impossible  or  fraught with substantial  difficulties.  In the 
overwhelming major i ty  of cases  the des i red  causal charac te r i s t i c s  cannot also be measured  direct ly.  The 
the rmal  state of the object as a reaction to an exciting effect can only be obtained in a limited number of 
points in the space coordinates .  These data a re  aggravated by noise and various e r r o r s .  Therefore ,  the 
mathemat ica l  a s surance  of the rmal  simulation should rely to a considerable extent on the algori thm for 
solution of the inverse  hea t - t r ans fe r  p roblems.  

Let us separa te  the the rmal - s imula t ion  problem into two success ive  stages:  recognition and " t ra in-  
ing" of the model s t ruc tu re ,  and intr insic  identification of the model.  

To do this ,  let us represen t  the mathemat ical  model of the thermal  object to be trained (which we 
shall  la ter  understand to be a p rocess  or  an engineering system) in the provisional  opera to r - -vec to r  form: 

AMId, ~, T, u, x, ~ l = T ,  

where A M is a nonlinear space- - t ime  t ransformat ion  in the general  case ,  which governs  the correspondence 
between the vec tors  (vector functions) of the k n o ~  causal  cha rac te r i s t i c s  of the model (~), the variable 
causal  training cha rac te r i s t i c s  (fl), the t empera tu re  field T ( a ,  ~, u, x, T), and the loading effect ft. 

A vec tor  consist ing of separa te  representa t ions  of the causal  model charac te r i s t i cs  is taken as the 
t r a in ing -cha rac t e r i s t i c s  vec tor  ft. It can include individual thermophysica l  p roper t i es ,  the initial t empe r -  
ature distr ibution,  the boundary conditions or  pa ramete r s  in the boundary conditions, functions and pa ram-  
e te rs  defining the body boundary, etc. 

Recognition of the s t ruc ture  of the the rma l  model will be considered as a problem of recognizing 
the components of the vec tor  ft. The solution of this problem is constructed by means of the resul ts  of 
"yes--no"  type answers  to checking questions of the following kind: Is the general ized equation of heat 
conduction adequate for the p rocess  under investigation ? Is it necessa ry  to consider  a two-dimensional  
ra ther  than a one-dimensional  model ? Must the displacement  of the body boundaries be taken into account ? 
It is  neces sa ry  to take account of the variabil i ty of the thermophysica l  proper t ies  ? etc. 

The select ion and "training" of the identification algori thms (inverse problems) also occurs  at this 
stage.  For  this purpose such training questions must be used as would permi t  obtaining answers  to the 
following fundamental methodological  questions.  What formulat ions of the inverse  problems are  most  ex-  
pedient in this case ? What methods of solving them would yield the best or sufficient accuracy  of the r e -  
sults ? What e r r o r  es t imates  of the causal  cha rac te r i s t i c s  being reproduced can hold depending on the 
kind and level of the e r r o r s  in the initial data ? 

There fo re ,  the f i rs t  part  of the the rma l  simulation is a methodological investigation based on the 
solution of model p rob lems ,  available experimental  r esu l t s ,  and specially formulated tes t s .  Consequently, 
a number  of the uncertaint ies  in the select ion of the model s t ruc ture  and the identification algori thms is 
reduced and the accuracy  of the cha rac t e r i s t i c s  being identified is also est imated p r io r  to the beginning of 
the second part  of the simulation.  

On the basis of the resul ts  of the f i rs t  s tage,  the thermal-model - ident i f ica t ion  stage assumes  the 
model s t ruc ture  and the optimal a lgor i thms for  the solution of inverse  problems to be known. The purpose 
of the second stage is to find the causal  cha rac t e r i s t i c s  of the model by means of measurement  data on rea l  
objects by solving the inverse  hea t - t r ans fe r  problems.  And if we speak about identification of the model of 
an engineering sys t em,  then the purpose is to obtain, on the whole, a possibili ty of construct ing a function- 
a l - p h y s i c a l  model of the sys tem to be used in subsequent s tages of the thermal  design or  as a check and 
control  of the the rma l  mode under working conditions. 

The a lgor i thmized model of a the rmal  object is represented  as follows in abs t rac t  form:  

A~ [~TPC, To, qb, F, TM, u. x, v] =~ TM, (1) 

Ah~ is the space- - t ime  opera tor  approximating AM; for  this model it de termines  the correspondence where 
between ~'*the thermophys ica l  characte_ristics given by the vector  a T P C ,  the initial distr ibution (the vec tor  
T0), the geomet r i c  c h a r a c t e r i s t i c s  (4), the boundary conditions or  their  pa r ame te r s  (13, the d iscre t ized 
t empera tu re  field frM),  and the loading effect (u). 

The unknown causal  cha rac te r i s t i c s  a re  es t imated on the basis of the model (1) and the states of the 
the rma l  object a re  determined.  
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O p t i m a l  T h e r m a l  D e s i g n  

The select ion and determinat ion  of the design p a r a m e t e r s  of heat shield,  heat regulat ion,  and t h e r -  
mosta t  sys tems  a re  usually considered the pr incipal  purpose of t h e r m a l  design. The genera l  formulat ion 
of the appropr ia te  optimization problem is the following: Select  a vec tor  of the var iable  causal  cha rac -  
t e r i s t i c s  ~ of dimensional i ty  n f rom some domain P such as to ex t r emize  (for def ini teness ,  to min imize ,  
for  example) ,  the ta rge t  function J.  The domain of allowable solutions P is ex t rac ted  by functional-engi  

n e e r i n g  and physical  cons t ra in ts  {gi}l / wiaieh a re  determifllJd by the t empera tu re  mode in the genera l  case.  

vve the re fo re  have the problem 

rain S [Pl, 
7r 

P ~ {p :g~(p, T(x, z , p ) ) ~ 0 ,  i =  1, 2 . . . . .  i}, 

T(-x, -~,-p)= AtT(;, "~, p), P]; pER", 

where A is a space- - t ime  t r ans fo rma t ion  which sets  up a cor respondence  between the des i red  vec tor  and 
the t he rma l  s tate  of the sys tem being designed.  As the main design c r i t e r ion ,  the ta rge t  function can,  
cha rac t e r i ze  the sys tem weight, the coolant or  energy consumption, the expenditure on production and 
se rv ic ing ,  etc.  

Let  us examine the problem of the optimal design of a heat-shie ld  coating {HSC) in the following 
sufficiently genera l  formulat ion in g r e a t e r  detail:  Determine  the design cha rac te r i s t i c s  of a mul t i layered 
coating, one ofwhoseboundary  conditions (and the corresponding layer)  is  subject to ex terna l  non-s teady-  
s tate  heating, rupture,  and ent ra inment ,  while the other  is subject  to cooling by the circulat ing hea t - t r ans -  
fer  agent.  Let  us take the total  coating mass  as the c r i t e r ion  for  the quality of the heat shield. 

In many cases  the heat-propagat ion p rocess  in an HSC is a lmost  one dimensional .  Then the t e m p e r -  
a ture  field of the coating along the normal  to the sur face  is r epresen tab le  at a cer ta in  point by a sys tem of 
one-dimensional  par t ia l  different ial  equations: The hea t - t r ansmiss ion  p rocess  fo r  the f i r s t  (k--l) l ayers  
is descr ibed  by homogeneous heat-conduction equations 

OT~ O (  6T~ ) 
Cefj(T)--07 . . . .  0.~- $ef~(T) ~ -  , (x, T) ESj, 

S~--{(x,~):xi_~<x<xi; Xo=0; 0 < v ~ m } ,  1 = I ,  2 . . . . .  k - - l ,  

and for  the las t ,  par t ia l ly  entrained layer  by the genera l ized  equation 

OT 
Cefn (T, 7) 0 (~ef~(T, y) c)T ) OT q- K T, +-Qef(T, y), ax ~ -  el( v) ~ 

(x, T)ESk = {(x, ,:):x~_~<x.<X(~); 0 < ~ % , } ,  

where r m is the maximum value of the HSC operating t ime ,  and the subscr ipt  ef denotes the effect ive value 
of the the rmophys ica l  cha rac t e r i s t i c s .  

The thermophys ica l  p roper t i e s  of a rupturing l aye r  a re  known functions of the t em p e ra tu r e  T and the 
p a r a m e t e r  7 which takes account of the dynamics of the change in the proper t ies  during heating and rupture  
of the ma te r i a l .  The p roper t i e s  of the remaining layers  a re  given by functions of the t empera tu re .  

The motion of the outer  boundary of the layer  being ruptured,  which is determined by the dependence 
X(T), occurs  because of l inear  ent ra inment  of the ma te r i a l  and is implici t ly re la ted to the external  heat-  
t r ansmis s ion  p a r a m e t e r s  by means of the chemica l -k ine t ics  equation and the heat and mass  t r ans fe r .  

The init ial  condition 

is  known. 

Tj(x, 0)=~j(x) ,  ] =  I, 2 . . . . .  k ,  

In the externa l  boundary conditions 

~ef,(T) 0T~(0, z) ~ q0(~)=0, 
c)x 
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Zero(T) dTk (X (x)' x) Ox " + qh (1:) = 0 

the conductive heat f luxes qo and qk sa t i s fy  the following hea t -ba lance  equations:  

q0(T) = ~(TI(0, ~)-- ~oo0, 

qk (x) = qw(T~,(x), x) - -  e~T4uz(x) - -  qen(rw(v), x), 

where  tr i s  the coeff icient  of heat e l iminat ion ,  Tcoo l  is the coolant  t e m p e r a t u r e ,  qw andT w a re ,  r e s p e c -  
t tvelyt  the ex t e rna l  heat  flux and the t e m p e r a t u r e  of the ent ra inable  HSC boundary tand  qen is the heat  flux 
due to the e f fec t s  of blowing and rupture  on the body su r face .  

The conditions fo r  connection of the l a ye r s  a s s u m e  equality of the fluxes and a poss ib le  t e m p e r a t u r e  
jump at  the junc tures .  

Using this  phys ica l  model  of the object  being designed,  se lec t  the number ,  m a t e r i a l ,  and th ickness  
of the l a y e r s  f r o m  the condition of a min imum m a s s  of coat ing.  This  p rob lem is usual ly  s impl i f ied suc -  
cessfu l ly  by a s suming  that  the opt imal  th i cknesses  in each  point r of the coating su r face  under cons ide ra -  
t ion can be de t e rmined  independently of the o thers  by the c r i t e r ion  of a min imum speci f ic  HSC m a s s  at this  
point 

k 
m, = x~ pp~, (2) 

/=l 

where  pj i s  the densi ty  of the m a t e r i a l  in the j - th  l a y e r  and b r i s  the th ickness  of the j - th  l aye r  at  the 
r - t h  poiht of the coating su r f ace .  J 

The opt imizat ion p rob l em  r equ i r e s  the solution with a number  of cons t ra in t s  taken into account ,  
which a r e  dic ta ted by the r e q u i r e m e n t s  of the al lowable t e m p e r a t u r e  operat ing conditions for  the l a y e r s ,  
the speci f ic  heat  of the coolant ,  the s t reng th ,  s t r uc tu r a l  complexi ty ,  fabr ica t ion  technology,  and economic 
expendi tures .  

We t h e r e f o r e  have a combined coe f f i c i en t -geomet r i c  i nve r se  p rob lem in an e x t r e m a l  formula t ion .  
Let  us s epa ra t e  it  into two p rob l ems  fo r  a p rac t i ca l  rea l iza t ion .  The p rob lem is solved by the method of 
sampl ing  for  the va r ia t ion  of the t he rmophys i ca l  c h a r a c t e r i s t i c s  in the c lass  of given brands  of m a t e r i a l s  
as well  as of the number  of coating l a y e r s .  A th ickness  vec to r  b r  of d imension k is  sought for  each  of 
these  v a r i a n t s ,  which would yield a min imum speci f ic  m a s s  fo r  the coating at the given point r and would 
sa t i s fy  the  cons t r a in t s  which s e p a r a t e  the domain  of the al lowable t e m p e r a t u r e  mode of opera t ion of the 
individual  l a y e r s ,  i . e . ,  the g e o m e t r i c  IPHC with a m a s s  opt imal i ty  c r i t e r ion  

rain rn, ( b,), 
b r ~  

a{b :g i (b ,  T(x ,x ,  b))~O; i:= I, 2 . . . . .  l}, (3) 

T ( x , x , - b ) : : A [ T ( x , r ,  b), bl; bER k. 

is  solved by the c rux  of the m a t t e r .  

Exac t ly  as  in the case  of IPHC for  the  p rocess ing  of expe r imen ta l  r e su l t s ,  i nve r se  p rob l ems  in the 
t h e r m a l  design formula t ion  a r e  i nco r r ec t ly  posed in the gene ra l  c a se .  This occurs  mos t  often because  of 
the poss ib le  incons i s tency  between as s ignment  of the s epa ra t e  conditions fo r  an a p r i o r i  ex t rac t ion  of the 
domain  of a l lowable  engineer ing solut ions .  Hence,  not al l  the cons t ra in t s  should be cons idered  "ha r d , "  
but the compul so ry  and des i r ab le  among them should be ex t rac ted .  The p r e f e r e n c e  fo r  one condition over  
another  is  de t e rmined  by the unremovabi l i ty  or  i r ra t iona l i ty  of e l iminat ing some  cons t ra in t .  Other  c r i -  
t e r i a  in the design p r o c e s s  can be r ev i sed  and a l t e red .  

The s t r a t egy  of changing the th ickness  during motion towards  the opt imum is  based on i t e ra t ive  
min imiza t ion  methods .  The ini t ia l  p rob l em  is  f i r s t  r e fo rmula t ed  into a p rob lem without cons t ra in t s  by 
using penalty functions.  
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Let us note one fact  in principle.  The solution found f rom the condition of minimum specific mass  at 
a number  of cha rac te r i s t i c  points of the coating can sat isfy the cons t ruc tor  of a heat-shield sys tem only 
when the heat-loading and hea t - remova l  conditions on the boundary sur faces  vary  comparat ively  slightly 
during the passage f rom one point r to another .  In the genera l  case ,  the vec tors  boP t obtained, which 
a re  optimal for  each point r taken separa te ly ,  will not agree  f rom the s t ruc tura l  an~ technological  view- 
points.  This is still  another " incor rec tness"  of the initial formulat ion of this problem. Because of the 
change in heat loads on the body sur face ,  a change in layer  thickness during passage f rom one surface 
point to another can be represented  by a sufficiently complex vec tor  function of the coordinates of the HSC 
support  surface .  A pract ica l  real izat ion of the laws found for  the thickness variat ion turns out to be ex- 
pedient in connection with s t ruc tura l - - technologica l  difficulties.  

There fore ,  it appears  neces sa ry  to find a compromise  solution which is close to the optimal f rom 
the weight viewpoint and sat isf ies product ion--economic requi rements .  Such a solution can be obtained by 
modifying the initial design cr i ter ion because of the addition of a t e r m  dictating the necessa ry  degree  of 
smoothness  of the th ickness-dis t r ibut ion d iagram.  Assuming for  s implici ty that profiling of a mult i-  
layered heat shield is real ized in one coordinate s ,  we write the new target  function in the form 

S k k S 

o i=1 ]=l o 

(4) 

where S is the length of the contour of the HSC reference  surface (at x = 0, for example), Vj a r e the  powers of 
the der ivat ives ,  ~j > 0. Design prac t ice  for  HSC states  that sufficiently often xj(S), j = 1, 2, . . . ,  k, a re  func-  
tions which vary  slightly and are  sufficiently s imi la r  in fo rm,  and whose smoothness requi rements  a re  ap-  
proximately  identical.  We shall hence consider  that a i = a2 = �9 �9 �9 = a k  = a , Yl = ~/2 = �9 .- = ~k = Y, and, 
m o r e o v e r ,  an adequate degree of smoothness  of the des i red  curves  is obtained for  y = 1 or  2. 

Selection of the pa r ame te r  (~ as a quantity governing the c loseness  of the design solution to the op- 
t imal is ca r r i ed  out according to the limiting condition on the maximum allowable difference between the 
total mass  of the HSC (AMall) obtained as a resul t  of minimizing the functional (4), and the minimum total 
mass  corresponding to the initial c r i ter ion (2): 

[M [ a ] -  ,'~4mi,I- hMal 1 = rain. 
r 

The thickness vec tor  function b(S), found by means of the minimum of the functional (4) for the value 
a = O'op t, i s t aken  as optimally smoothed.  

The optimization method proposed for  the HSC pa rame te r s ,  based on regular iz ing the geomet r i c  in-  
ve rse  problem of heat conduction, permi t s  the construct ion of a fully automated algori thm for  heat-shield 
design.  

G e n e r a l  A p p r o a c h  t o  O b t a i n i n g  S m o o t h  I P H C  S o l u t i o n s  

One of the most  genera l  and universa l  me~hods of solving incor rec t ly  formulated problems is the 
Tikhonov regular izat ion method [3, 4]. Let us examine the application of this method to the solution of 
IPHC for  the thermal  simulation and in terpre ta t ion of the resul ts  of thermal  exper iments .  

Let us examine the domain 

D={(x,  z); XI(T)<x.~X2(z); 0 < ~ } ,  

in which is given the nonlinear heat-conduction equation 

C(T) OT 0 (~(T) OT ) OT -~- == O-~ -~x + K (T) ~ + Q (T) (5) 

in the plane (x, T). The boundary-value problem for  (5) assumes  the following initial t empera tu re  d i s t r i -  
but i on 

T(x ,  O) = r  Xl(0)~<x~<X2(0) (6) 

and the boundary conditions 
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Li(T)=cpl(x), i = l ,  2, 

to be g iven,  where  the o p e r a t o r s  can co r r e spond  to boundary conditions I and II of the boundary-va lue  
p r o b l e m s ,  i . e . ,  

L i (T) ~_ T (Xi (x), r) 

o r  

(7) 

Li (T) ~ - -  Z, (T (Xl (x), x)) OT (X~ (x), x) 
Ox 

and a mixed boundary-va lue  formula t ion  is  a l so  poss ib le .  

The d i r ec t  p rob l em  is  to s e e k  the function T(x,  T) sat isfying (5) in the open domain D which sa t i s f i es  
conditions (6) and (7) and is  continuous toge ther  with the gradient  0T(x, r ) / a x  in the closed domain D. 

If  one of the functions ~0i(r), ~(x), C(T), MT), K(T),  Q(T) is  not known and this  function [we denote it  
by u(y)] and the t e m p e r a t u r e  field T(x,  r) mus t  be known by means  of the kno~aa remain ing  and additional 
conditions T(x*,  r) = f ( r ) ,  o r  T(x,  r*) = f ( x ) ,  where  x*, T* a r e  given points or  curves  ix* (T), z*(X)] within 
the domain  D, then we have the i nve r s e  p rob lem of heat conduction. Hencefor th  the additional condition 
will be wri t ten in the genera l i zed  f o r m  T(~, ~*) = f ( D .  Let  us a s s u m e  that  the solution of this p rob lem 
ex is t s  and is  unique; however ,  the s tabi l i ty  condition is spoi led.  

If  the e x t r e m a l  formula t ion  of the IPHC is  fo rmula ted  as a p rob lem to s e a r c h  for  an e lement  u f r o m  
some  domain  U governed by p rev ious ly  known phys ica l  cons t ra in t s  [the posi t ivi ty  of the functions C(T), 
X(T), and X(r) ,  f o r  example ] ,  which r ea l i z e s  the min imum of the r m s  deviat ion between the design and 
given t e m p e r a t u r e s  

p (u) - ~ ~ 2 = ~T (~, ~*, u (y)) - -  f (~-)lc,, 

then such a p rob Iem  turns  c~tt to be i nco r r ec t l y  fo rmula ted .  Let  us r egu la r i ze  this p rob l em by modifying 
it  as  follows: 

rain [p (u) + aP. (u)l, (8) 
u~U 

where  ~2 {u) is  the Tikhonov r e g u l a r i z e r  and ~ > 0. 

As exper i ence  with the solution of i n c o r r e c t  i nve r se  p rob lems  shows [5, 6], tn many  cases  the 
p r e s e n c e  of a p r i o r i  in format ion  about the smoothness  of the solution p e r m i t s  the assumpt ion  

W 2 

where n = 1 or  2, and u* is  a t r i a l  solution.  

The e x t r e m a l  of the functional (8), found fo r  a spec i f i c  a g r e e m e n t  between the p a r a m e t e r  a and the 
e r r o r  of the en t rance  da ta ,  wig  yield an app rox ima te  solution of the IPHC.  

The i t e r a t i ve  min imiza t ion  method (8) r e su l t s  in the convergent  sequence  

u~+ l = u j q - A u ~ ,  ] = 0 ,  1 . . . . .  

where  u 0 is  the ini t ial  approx imat ion .  

The i n c r e m e n t s  Auj for  the p a s s a g e  f r o m  i te ra t ion  to i t e ra t ion  a r e  de t e rmined  by the expres s ion  

Au~ = - -  8 6  Iu j l ,  

where G is  a v e c t o r  indicating the d i rec t ion  f r o m  the point uj and fl i s  the magnitude of the s tep  along this 
d i rec t ion .  

T h e  g rad ien t  of the min imiz ing  functional mus t  be known in methods of gradient  type for  the d e t e r -  
ruination of G. Depending on the kind and complexi ty  of the p rob lem to be solved,  i t  can be calculated by 
t h r ee  methods :  analyt ical ly,  byus ing  the adjoint boundary-va lue  p rob l em [7, 81, and exper imen ta l ly .  

Good p rac t i ca l  r e su l t s  [5, 6] on the se lec t ion  of the p a r a m e t e r  a yield known pr inc ip les  of a res idua l  
[9] which r e g u l a r i z e s  the functional [10, 11], or  the i r  combination with the method of a quas iopt imal  p a r a m -  
e t e r  I12]. 

1408 



L I T E R A T U R E  C I T E D  

1. P. Eichhoff,  P r inc ip les  for  Identif icat ion of Control Sys tems  [Russian t rans la t ion] ,  Mir ,  Moscow (1975). 
2. W . J .  Karp lus ,  P roc .  Conf.  AFIPS,  41, 1 (1972). 
3. A . N .  Tikhonov,  Dokl. Akad. Nauk SSSR, 151, No. 3 (1963). 
4. A . N .  Tikhonov and V. Ya. Arsen in ,  Methods of Solving I n c o r r e c t  P rob l ems  [in Russ ian] ,  Nauka,  Mos-  

cow (1974). 
5. O . M .  Alifanov, I n z h . - F i z .  Zh . ,  24, No. 2 (1973). 
6. O . M .  Alifanov and E .  A. Artyukhin,  Heat and M a s s ' T r a n s f e r  [in Russ ian] ,  Vol. 9, Minsk (1976). 
7. O . M .  Alifanov,  I n z h . - F i z .  Zh . ,  26, No. 4 (1974). 
8. E . M .  Berkovich ,  B. M. Budak, and A. A. Golubeva,  Approximate  Methods of Solving Optimal  Control 

P rob l ems  and Some I n c o r r e c t  Inve r se  P rob lems  [in Russian] ,  Izd. Mosk. Gos.  Univ. (1971). 
9. V . A .  Morozov,  Zh. Vychisl .  Mat. Mat. F i z . ,  8, No. 2 (1968). 

10. V . A .  Morozov,  Zh. Vychisl .  Mat. Mat. F i z . ,  6, No. 1 (1966). 
11. O . A .  L i skove t s ,  Dokl. Akad. Nauk SSSR, 229, No. 2 (1976). 
12. A . N .  Tikhonov and V. B. Glasko,  Zh. Vychisl .  Mat. Mat. F i z . ,  5, No.  3 (1965). 

I M P U L S E - F U N C T I O N  M E T H O D  F O R  H E A T - T R A N S F E R  

D Y N A M I C S  I N  A C H A N N E L  

B .  P .  K o r o l ' k o v  a n d  E .  A .  T s t r o v  UDC 662.987:536.247 

A method of s o h i n g  the boundary p rob lem for  h e a t - t r a n s f e r  dynamics  in a channel is  p r o -  
posed;  the p rob lem is reduced to in tegra l  equations of Vo l t e r r a  type.  

Nonsteady one-d imens iona l  motion of heat c a r r i e r  in a heated channel is  cons idered .  The p rob lem is 
to de t e rmine  the change in the p a r a m e t e r s  ( t empera tu re ,  flow r a t e ,  p r e s s u r e )  due to per tu rba t ion  of the ex-  
t e rna l  condit ions.  The change in the flow ra te  and p r e s s u r e  at the channel inlet  a r e  re la ted  by the boundary 
conditions for  the equation of motion.  In mos t  of the k n o ~  works ,  the conditions at the r ight -hand boundary 
were  e i the r  c o m p l e t e l y ' d i s r e g a r d e d  [1], or  e l se  were  a s sumed  to affect  only the p r e s s u r e  deviat ion at the 
inlet  and the flow ra te  was a s sumed  to be given [2]. I f  conditions a r e  specif ied at both boundar ies ,  it is  n ece s -  
s a r y  to soh,  e a boundary p rob lem for  the s y s t e m  of equations desc r ib ing  the heat t r a n s f e r  and hydrodynamics .  
A m o r e  comple te  formulat ion of the p rob lem is  poss ib le  if  n u m e r i c a l  methods a r e  used for  the d i rec t  i n t eg r a -  
tion of the d i f fe ren t ia l  equations,  but to date this approach  has been used mainly  in the context of sc ient i f ic  r e -  
s e a r c h  because  the computat ional  a lgor i thms  a r e  too complex for  use  in engineer ing p rac t i ce .  

The p r e sen t  work d e s c r i b e s  a method by which, in the l inear  case ,  the boundary p rob lem can be reduced 
to two in tegra l  Vo l t e r r a  equations of the second kind of convolution type;  analyt ic  express ions  a r e  obtained for  
the impulse  function re la t ing the changes in input and output p a r a m e t e r s .  Computer  solution of the in tegra l  
equations is  s t r a igh t fo rward .  

Taking the equations of s ta t ics  into account [3], a l inear ized  s y s t e m  of conserva t ion  equations may be 
wri t ten for  the p a r a m e t e r  deviat ions:  

.On D__ + f OA,.o_ = O, (~ ) 
az O~ 

Do TOAi + /P0 OAio~ r ozOi~ AD =: Aah (O 0 - -  t0) -i- %h(A0 - -  At), (2) 

a/~o (3) hq - -  gw C w .... Aah (0 o - -  to) -! %h (h0 - -  At), 
O~ 

hp~---Ap = 2_6p0 AD-- 6P0 Ap, 
Do P0 
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